千锋教育-做有情怀、有良心、有品质的职业教育机构

手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

当前位置:首页  >  技术干货  > 基于 Python K-近邻算法的手写识别系统

基于 Python K-近邻算法的手写识别系统

来源:千锋教育
发布人:xqq
时间: 2023-11-08 00:00:24 1699372824

这里我们一步步的构造使用k-近邻分类器的手写识别系统,为了简单起见,这里构造的系统只能识别数字0到9,参考图2-6,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素*32像素的黑白图形。尽管采用文本格式存储图形不能有效地利用内存空间,但是为了方便理解,我们还是将图像转化为文本格式。

1.1,使用k-近邻算法的手写识别系统步骤

(1)收集数据:提供文本文件

(2)准备数据:编写函数classify0(),将图像格式转换为分类器使用的list格式

(3)分析数据:在Python命令提示符中检查数据,确保它符合要求

(4)训练算法:此步骤不适用与k-近邻算法

(5)测试算法:编写函数使用提供的部分数据集作为测试样本,测试样本与非测试样本的区别在于测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误

(6)使用算法:本例没有完成此步骤,如果感兴趣的话,可以构建完整的应用程序,从图形中提取数字,并完成数字识别

1.2,准备数据:将图像转换为测试向量

实际图形存储在源码的两个子目录中:目标trainingDigits中包含了大约2000个例子,每个例子如图2-6所示,每个数字大约有200个样本;目录testDigits中包含了大约900个测试数据,我们使用目录trainingDigits中的数据训练分类器,使用目录testDigits中的数据测试分类器的效果,两组数据没有覆盖,你可以检查一下这些文件夹的文件是否符合要求。

以上内容为大家介绍了基于PythonK-近邻算法的手写识别系统,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注IT培训机构:千锋教育。

tags: python培训
声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。
10年以上业内强师集结,手把手带你蜕变精英
请您保持通讯畅通,专属学习老师24小时内将与您1V1沟通
免费领取
今日已有369人领取成功
刘同学 138****2860 刚刚成功领取
王同学 131****2015 刚刚成功领取
张同学 133****4652 刚刚成功领取
李同学 135****8607 刚刚成功领取
杨同学 132****5667 刚刚成功领取
岳同学 134****6652 刚刚成功领取
梁同学 157****2950 刚刚成功领取
刘同学 189****1015 刚刚成功领取
张同学 155****4678 刚刚成功领取
邹同学 139****2907 刚刚成功领取
董同学 138****2867 刚刚成功领取
周同学 136****3602 刚刚成功领取
相关推荐HOT