千锋教育-做有情怀、有良心、有品质的职业教育机构

手机站
千锋教育

千锋学习站 | 随时随地免费学

千锋教育

扫一扫进入千锋手机站

领取全套视频
千锋教育

关注千锋学习站小程序
随时随地免费学习课程

当前位置:首页  >  技术干货  > BP神经网络与Python

BP神经网络与Python

来源:千锋教育
发布人:xqq
时间: 2023-11-08 00:36:24 1699374984

人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善.

联想大家熟悉的回归问题,神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数,并使用该函数进行预测,网络的训练过程即为调节该函数参数提高预测精度的过程.神经网络要解决的问题与最小二乘法回归解决的问题并无根本性区别.

感知机(Perceptron)是一个简单的线性二分类器,它保存着输入权重,根据输入和内置的函数计算输出.人工神经网络中的单个神经元即是感知机.

在前馈神经网络的预测过程中,数据流从输入到输出单向流动,不存在循环和返回的通道.

目前大多数神经网络模型都属于前馈神经网络,在下文中我们将详细讨论前馈过程.

多层感知机(MultiLayerPerceptron,MLP)是由多个感知机层全连接组成的前馈神经网络,这种模型在非线性问题中表现出色.

所谓全连接是指层A上任一神经元与临近层B上的任意神经元之间都存在连接.

反向传播(BackPropagation,BP)是误差反向传播的简称,这是一种用来训练人工神经网络的常见算法,通常与最优化方法(如梯度下降法)结合使用.

神经网络模型在结构上属于MLP,因为采用BP算法进行训练,人们也称其为BP神经网络.

以上内容为大家介绍了Python增强,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注IT培训机构:千锋教育。

tags: python培训
声明:本站稿件版权均属千锋教育所有,未经许可不得擅自转载。
10年以上业内强师集结,手把手带你蜕变精英
请您保持通讯畅通,专属学习老师24小时内将与您1V1沟通
免费领取
今日已有369人领取成功
刘同学 138****2860 刚刚成功领取
王同学 131****2015 刚刚成功领取
张同学 133****4652 刚刚成功领取
李同学 135****8607 刚刚成功领取
杨同学 132****5667 刚刚成功领取
岳同学 134****6652 刚刚成功领取
梁同学 157****2950 刚刚成功领取
刘同学 189****1015 刚刚成功领取
张同学 155****4678 刚刚成功领取
邹同学 139****2907 刚刚成功领取
董同学 138****2867 刚刚成功领取
周同学 136****3602 刚刚成功领取
相关推荐HOT